При решении задач с параметрами нужно иметь представление о множестве допустимых значений параметра. Если параметру, содержащемуся в уравнении (неравенстве) придать некоторое значение, то возможен один из двух случаев:
Получиться уравнение (неравенство), содержащее лишь данные числа и неизвестные и не содержащее параметров.
Получиться равенство (неравенство), одно (по крайней мере) из выражения не имеет смысла.
Говорят, что в первом случае значение параметра является допустимым, а во втором недопустимым.
Решить уравнение или неравенство с параметром – это значит, для каждого допустимого значения параметра найти множество всех решений данного уравнения или неравенства.
Решение задач
Рассмотрение примера решения задачи:
При каких значениях m ровно один из корней уравнения 3х2+х+2m-3=0 равен 0?
Учитель записывает решение на доске и поясняет каждый шаг.
Решение задач
- задания 1, 2: каждое задание один из учеников решает на доске, остальные – в тетради. После решения задания 2 ученик с помощью учителя записывает на доске условия, определяющие количество корней квадратного уравнения в зависимости от значения А(а).
- задание 3: учащимся дается время на самостоятельное выполнение задания. После того, как с заданием справилась треть класса, один из учеников, его выполнивших, записывает решение на доске.
Дополнительные задания:
- учащиеся, решающие «вперед», самостоятельно выполняют задания 4-7. В конце занятия производится устная проверка решения этих заданий: рассказывается идея и шаги решения.
Задания.
Основная часть:
1. При каких значениях m ровно один из корней уравнения равен 0: x2+(m+3)x+m-3=0 2. При каких значениях параметра р уравнение рх- х+3=0 имеет единственное решение?
При решении данного уравнения необходимо учесть, что может быть р=0. В этом случае уравнение также имеет единственное решение.
В общем случае условия существования единственного решения запишутся следующим образом:
или .
Если то уравнение не имеет корней.
Если то уравнение имеет бесконечно много решений.
При каких значениях параметра а уравнение ах-4х+а+3=0 имеет не более одного корня?
Дополнительные задания:
4. При каких значениях а корни уравнения 4х2+(5а-1)х+3а=-а равны по модулю, но противоположны по знаку?
Найдите все значения параметра k, при которых уравнение (k-2)x-2kx+2k-3=0 имеет хотя бы один корень?
Доказать, что при любом значении а уравнение х2+(а-2)х+(а-3)=0 имеет два корня.
При каких значениях параметра а уравнение имеет единственное решение?
4. Подведение итогов занятия:
- Интересными ли явились задания?
Полезная информация:
Методические рекомендации использования художественной литературы на уроках
истории
Включение органических образов художественной литературы в изложении учителя - один из важных методов её использования в преподавании истории. Учитель использует художественную литературу как источник, от куда он заимствует красочные образы сравнения и меткие слова для своего изложения. В этих случ ...
Обоснование содержания и методики физического воспитания оздоровительной
направленности девушек 10-11классов
В течение последнего десятилетия повышенный интерес у педагогов вызывает проблема совершенствования физического воспитания девушек старшего школьного возраста связанного с ухудшением состояния их здоровья. Это определяет актуальность проблемы физического воспитания и требует дальнейшего совершенств ...
Организация театральной деятельности в школе
Театр как явление, как мир, как тончайший инструмент художественного и общественного познания и изменения действительности, представляет, богатейшие возможности для становления личности ребенка. Иными словами, театральная деятельность - путь ребенка в общечеловеческую культуру, к нравственным ценно ...