![]() |
Модуль 1. «Параллельность прямых и плоскостей в пространстве»
Цель:
усвоить понятия параллельности скрещивающихся прямых в пространстве; прямой, параллельной плоскости в пространстве; двух параллельных плоскостей в пространстве;
рассмотреть случаи взаимного расположения прямых, прямой и плоскости, двух плоскостей в пространстве;
ознакомиться с признаком скрещивающихся прямых, параллельности прямой и плоскости, параллельности двух прямых, параллельности двух плоскостей, теоремой о единственной прямой, проходящей через точку параллельно данной прямой, линии пересечения двух плоскостей третьей;
научиться применять теоретически положения при доказательстве определённых фактов решении практических заданий. Освоение данного модуля необходимо для более глубокого понимания темы и подготовки к восприятию следующего материала.
1. Ознакомьтесь со следующими теоретическими положениями
![]() |
Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются (рис.1). Условное обозначение: аúú b.
Определение. Прямые в пространстве могут не пересекаться, но лежать в разных плоскостях. В этом случае они называются скрещивающимися (рис.2).
Случаи взаимного расположения двух прямых в пространстве (схема I)
Схема I
![]() |
Доказательство: пусть точка А не принадлежит прямой b. Проведем через эту прямую и точку А плоскость α. Эта плоскость единственна. В плоскости α через точку А проходит единственная прямая – назовем её а, -параллельно прямой b. Она и будет искомой прямой, параллельной данной (рис.3).
Плоскость может быть задана следующими способами: тремя точками, не принадлежащими одной прямой; двумя пересекающимися прямыми; двумя параллельными прямыми.
Теорема (признак скрещивающихся прямых). Если одна прямая лежит в данной плоскости, а другая прямая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются.
![]() |
Доказательство: пусть прямая а лежит в плоскости α, а прямая b пересекает плоскость α в точке В, не принадлежащей прямой а (рис.4). Если бы прямые а и b лежали в одной плоскости, то в этой плоскости лежали бы прямая а и точка В.
Полезная информация:
Методика изучения площадей фигур в курсе геометрии средней школы
В теме «Площади фигур» наблюдается синтез традиционно-синтетического и аналитического методов. Изучаемые здесь факты носят аналитический характер (например площадь треугольника), а доказательства основаны на применении традиционно-синтетического метода. При изучении темы «Площади фигур» используетс ...
Взаимодействие школьного социального педагога с другими работниками
школы, ведомствами и семьями учащихся
Чтобы обеспечить разностороннее развитие личности каждого ребенка, необходимы усилия всего общества, всех государственных и общественных структур. Все согласны с этой мыслью, а школа до сих пор кивает на семью, семья на школу и улицу, общественность - на школу, семью и улицу и т.д. Социальная педаг ...
Принцип доступности
Означает требования соответствия содержания и методов обучения и воспитание, а также объема изучаемого материала возрастным особенностям воспитанников, уровню их интеллектуального, нравственного и эстетического развитии. Организуя обучение и воспитание на высоком уровне научности, учитель-воспита ...