Логические методы познания

Страница 10

Однако, как при индуктивном, так и при дедуктивном методах при изложении новых понятий или новых общих теорий необходимо значительное время отводить на конкретные иллюстрации, на разбор примеров, анализ частных ситуаций. В методике преподавания каждое высказывание в категорической форме легко можно довести до абсурда. От самого учителя зависит оптимальный выбор метода, позволяющего на высоком уровне самостоятельности организовать познавательную деятельность учащихся.

В математике используются различные виды индукции: полная, неполная и математическая. Применение математической индукции покажем на следующем примере. Надо определить сумму n первых нечетных чисел: 1+ 3 + 5 + 7 + . + (2n - 1).

Обозначив эту сумму через S(n), положим n == 1, 2, 3. 4, 5; тогда будем иметь:

S(1)=1,

S (2)=1+3=4,

S(3)=1+3+5=9,

S(4)=1+3+5+7=16,

S(5)=1+3+5+7+9=25.

Мы наблюдаем интересную закономерность: при n = 1, 2, 3, 4, 5 сумма n последовательных четных чисел равна n2. Но заключение по аналогии, что это имеет место при любом n, сделать нельзя, ибо оно может оказаться ошибочным. Применим метод математической индукции, то есть предположим, что для какого-то числа n наша формула верна, и попытаемся доказать, что тогда она верна и для следующего числа n + 1. Итак, мы полагаем, что S (n) = 1 + 3 + 5 + . + (2n - 1) = n2.

Вычислим

S (п + 1) = 1+3+5 + .+(2n-1)+(2n+1).

Но по предположению, сумма п первых слагаемых равна п2, следовательно,

S (n + 1)= n2 + (2 п + 1) = (n + 1)2.

Итак, предположив, что S (п) = n2 , мы доказали, что S(n + 1) = (n + 1)2. Но выше мы проверили, что эта формула верна для п = 1, 2, 3, 4, 5, следовательно, она будет верна и для п = 6, и для п = 7 и т. д. Формула считается доказанной для любого числа слагаемых. Этот метод доказательства называется методом математической индукции.

Умозаключения делятся на логически необходимые и вероятностные (правдоподобные). Некоторые виды неполной индукции дают лишь вероятностные (или правдоподобные) заключения.

Единство дедукции и индукции, как в обучении, так и в научном творчестве своеобразно и ярко проявляется в математике – науке, значительно отличающейся от естественных и от общественных наук, как по методам доказательства, так и по методике передачи знаний учащимся.

Страницы: 5 6 7 8 9 10 

Полезная информация:

Профессиональная мобильность как механизм социальной адаптации
В настоящее время востребованы такие качества специалиста, как карьерная гибкость, адаптивность, готовность отдаваться работе, профессиональная мобильность. Мобильность – ключевое понятие, наиболее точно отражающее особенности современного этапа развития человека и общества. Быстро меняющийся техно ...

Формирование интонационной выразительности речи
1. Развитие восприятия различных видов интонации. Логопедическая работа проводится в определенной последовательности: 1. Общее знакомство с интонацией и средствами ее выражения (темп, ритм, высота и тон голоса, логическое ударение). 2. Развитие восприятия интонации повествовательного типа: а) знако ...

Теоретический обзор проблемы развития творческого воображения
Под воображением понимают познавательный психический процесс создания новых образов путем переработки материалов восприятия и представления, полученных в прошлом опыте. Воображение присуще только человеку. Оно позволяет представить результат труда, рисования и конструирования или любой другой деяте ...

Категории

Copyright © 2024 - All Rights Reserved - www.oxoz.ru