(*)
к устному вычислению суммы 7+(93+15), мы применяем (неявно) правило конкретизации: мысленно мы отбрасываем в записи закона ассоциативности кванторы общности, подставляем вместо переменных х, у, z постоянные «7», «93» и «15» соответственно и получаем равенство 7 + (93 + 15) = (7 +93) +15, следующее из (*) по правилу конкретизации.
Как видно, с помощью этого правила мы осуществляем переход от общего к единичному.
Обобщение, абстрагирование и конкретизация находят широкое применение в специальных методах обучения математике, о которых речь пойдет дальше.
Если некоторая реальная ситуация или связанная с нею задача приводит к еще не изученной математической модели, то приходится исследовать новый класс моделей.
Для осуществления перехода от конкретной модели к классу моделей такого типа используется обобщение и абстрагирование. Применение же результатов исследования к конкретной модели этого класса предполагает использование конкретизации.
Например, пусть некоторая задача описывается с помощью квадратного уравнения 2x2 – 9х + 2 = 0, (1)
когда учащиеся еще не умеют решать подобные уравнения.
Это является стимулом для изучения соответствующего класса уравнений (моделей)
ax2 + bх + с = 0.(2)
Переход от конкретной модели (1) к классу моделей (2), то есть от единичного к общему, осуществляется заменой коэффициентов, представляющих собой имена чисел, числовыми переменными.
После исследования этого класса моделей (построения алгоритма для решения любого уравнения этого класса) с помощью конкретизации (подстановки в формуле корней вместо а, b, с конкретных коэффициентов) решаем исходное и другие уравнения этого класса.
Процесс – абстрагирования в математике во многом отличается от аналогичного процесса в других науках, поскольку способы абстрагирования зависят от природы изучаемых объектов, характера и целей их изучения. Поэтому естественно, что характеристические особенности абстрагирования в математике неизбежно должны находить некоторое отражение и в методах обучения математике.
Наиболее распространенные в математике виды абстракций – обобщающая абстракция (или абстракция отождествления), идеализация и различные абстракции осуществимости – используются и в школьном обучении математике. Однако методически формирование этих абстракций не разработано. Поэтому часто эти и другие математические абстракции вызывают серьезные затруднения, с ними связаны и многие допускаемые учащимися ошибки.
Основой абстракции отождествления является отношение эквивалентности. При установлении отношения эквивалентности в исследуемом множестве объектов эквивалентные объекты отождествляются по какому-нибудь свойству, которое абстрагируется от остальных свойств этих объектов и становится самостоятельным абстрактным понятием, находящимся на более высокой ступени абстракции, чем объекты, от которых оно было абстрагировано.
Полезная информация:
Особенности двигательной активности в младшем
школьном возрасте
Граница между первым детством (дошкольный период) и вторым - возраст 6-7 лет - является одним из узловых, переломных моментов онтогенеза, когда происходят глубокие многообразные изменения в протекании физиологических и психофизиологических процессов. То, что именно на этом этапе ребенок попадает в ...
Методика руководства дидактическими играми в группе раннего дошкольного
возраста
Игры-занятия с дидактическими играми на первом году жизни проводятся с целью развития зрительного и слухового восприятия, движения руки и основных подготовительных этапов развития речи. Они направлены на формирование умений, с которыми в процессе самостоятельных упражнений дети еще овладеть не могу ...
Развитие фонематической системы у дошкольников с ОНР
При общем недоразвитии речи у детей нарушено или отстает от нормы формирование основных компонентов речевой системы: лексики, грамматики, фонетики. Речевая недостаточность у дошкольников может варьироваться от полного отсутствия у них общеупотребительной речи до наличия развернутой речи с выраженны ...