Реализация требований к современному уроку в личном опыте преподавания математики

Образование и воспитание » Современный урок математики, требования к нему » Реализация требований к современному уроку в личном опыте преподавания математики

Страница 9

Учитель: Запишите с доски в тетрадь только показательные уравнения. Я подчеркну показательные уравнения.

Далее учащимся предлагается некоторая порция теоретического материала.

Рассмотрим уравнения, следующего вида:

, , , .

Уравнения такого вида называются простейшими показательными уравнениями. Запишите это в тетрадь. Такие уравнения решаются с помощью свойства степени:

Степени с одинаковым основанием, а>0, а¹1 равны только тогда, когда равны их показатели.

Посмотрите на выписанные вами показательные уравнения. Какие из них являются простейшими уравнениями.

Ученики: Уравнение (3) 6 х = 36.

Учитель: Верно. Давайте его решим.

Учитель записывает решение уравнения на доске, ученики в тетради.

Учитель: Посмотрите на остальные показательные уравнения. Являются ли они простейшими?

Ученики: Нет.

Учитель: Как же мы будем их решать?

Итак, у нас возникла проблема: Как решать остальные показательные уравнения, которые не являются простейшими показательными уравнениями. Ваши предложения.

Возникает предположение (гипотеза): не простейшие показательные уравнения можно путем преобразований привести к уравнению вида , которое уже является простейшим, и которое мы умеем решать (формулируется учащимися, или учителем и учащимися, при затруднении последних).

(Замечание: эта гипотеза может возникнуть в результате решения уравнения ).

Далее, решаются все оставшиеся уравнения с использованием гипотезы, что и является в некотором роде ее практическим доказательством.

Закончить решение уравнений с доски можно общим выводом: решение любого показательного уравнения сводится к решению простейшего показательного уравнения.

Предлагается решить уравнение: №210 (6).

Далее предлагается решить уравнение №211(2) самостоятельно, предварительно побеседовав с учащимися о способе решения. Через пять минут учитель просит одного из учащихся сказать получившийся у него ответ, другие учащиеся проверяют правильность своего ответа.

Итоги подводятся серией вопросов: Какие мы сегодня уравнения учились решать? Какие виды уравнений еще вы знаете? Какая основная идея используется при решении любого показательного уравнения?

Запишите домашнее задание: §12, №209(1,2), №210(3), 211(1,4). Учитель комментирует домашнее задание.

Учитель: Подумайте, все ли вы сегодня поняли на уроке и почему? Если что-то было не понятно, то почему? Все ли вы усилия приложили, чтобы понять новый материал?

На данные вопросы можно побеседовать с учащимися.

Страницы: 4 5 6 7 8 9 

Полезная информация:

Формы организации образовательного процесса на основе интеграции содержания
Выделяют следующие формы организации образовательного процесса на основе интеграции содержания: пластообразная, спиралевидная, взаимопроникающая, контрастная, индивидуально-дифференцированная (творческая). Пластообразная – наслоение различных видов деятельности (познавательных, художественно-эстети ...

Восстановительный этап логопедических занятий
Трудности логопедической работы по восстановлению голоса детей с органическими поражениями гортани обусловлены рядом факторов: нарушением анатомической целостности гортани, физической ослабленностью ребенка, снижением активности его высших психических процессов, задержкой речевого развития. Поэтому ...

Организация рабочего места
Прежде чем браться за изготовление модели, необходимо подготовить рабочее место и нужный инструмент. Существует великое множество разновидностей рабочих столов, предназначенных и для кружков и для работы в домашних условиях, но требование ко всем одно — они должны быть удобными для работы. Независи ...

Категории

Copyright © 2024 - All Rights Reserved - www.oxoz.ru