Использование заданий творческого характера на уроках математики

Страница 6

В своём письме родителям Дядя Фёдор написал, что его дом, дом почтальона Печкина и колодец находятся на одной стороне улицы. От дома Дяди Фёдора до дома почтальона Печкина 90 метров, а от колодца до дома Дяди Фёдора 20 метров. Какое расстояние от колодца до дома почтальона Печкина?

С помощью теста проверялись те же компоненты структуры творческих способностей, что и при наблюдении.

На данном этапе изучены креативные способности и определены следующие уровни:

- низкий уровень:способности проявляются в общей, всем присущей потребности.

- средний уровень: способности появляются в сходных условиях (по образцу).

- высокий уровень: творческое проявление математических способностей в новых, неожиданных ситуациях.

Качественный анализ теста показал основные причины затруднения выполнения теста. Среди них: а) отсутствие конкретных знаний в решении задач (не могут определить, во сколько действий решается задача, не могут записать решение задачи выражением (во 2 (А) (экспериментальном) классе 2 человека - 100%, во 2 (В) классе - 3 человека - 50%) б) недостаточное формирование вычислительных навыков ( во 2 (А) классе 1человек – 50%, во 2 (В) классе 4 человека – 75%.

Развитие творческих способностей учащихся обеспечивается, в первую очередь, развитием математического стиля мышления. Для определения различий в развитии у детей способности рассуждать было проведено групповое занятие на материале диагностического задания «разное-одинаковое» по методике А.З. Зака. Выявлены следующие уровни способности к рассуждению:

высокий уровень – решены задачи № 1-10 (содержат 3-5 персонажей)

средний уровень – решены задачи № 1-8 (содержат 3-4 персонажа)

низкий уровень – решены задачи № 1 - 4 (содержат 3 персонажа)

В эксперименте применялись методы работы: -объяснительно-иллюстративный; - репродуктивный; - эвристический; - проблемного изложения; -исследовательский метод. В настоящем научном творчестве постановка проблемы идёт через проблемную ситуацию. Мы стремились к тому, чтобы ученик самостоятельно научился видеть проблему, формулировать её, исследовать возможности и способы её решения. Исследовательский метод характеризуется самым высоким уровнем познавательной самостоятельности учащихся. На уроках были организованна самостоятельная работа учащихся, этим были заданы учащимся проблемные познавательные задачи и задания, имеющие практический характер.

Фрагмент урока.

Цель: Формировать представления о возможности использования распределительного свойства деления относительно сложения для рационализации вычислений при решении задач.

Тема « Деление суммы на число»

I. Актуализация знаний.

II. «Открытие нового знания». Совершается на основе побуждающего диалога, при одновременном выдвижении гипотез.

Учащиеся читают текст задачи, рассматривают рисунки. Учитель задаёт вопросы:

- Что интересного заметили?

- Что вас удивило?

Дети осознают и формулируют проблему, предлагают возможности и способы её решения.

На основе анализа рисунков и текста происходит « открытие алгоритма деления суммы на число. Учащиеся объясняют свои решения и сравнивают их с решениями мальчиков. Очевидно, что решение Дениса свелось к тому, что он сначала собрал всех цыплят вместе (нашёл сумму заданных величин), а затем рассадил их в две коробки (разделил поровну). Решение Костика свелось к тому, что он разделил цыплят таким образом, чтобы в каждую коробку попало поровну чёрных и жёлтых цыплят (разделил цыплят по цвету). Работа с текстом со знаком ?

Цель работы: первичная рефлексия по поводу обнаруженного свойства действий над числами; первичное формулирование этого свойства.

Сравните свой вывод с правилом в учебнике.

Учащиеся предлагают заменить числа буквами и пользоваться для решения подобных задач формулой.

Подтверждение своих гипотез и окончательное формулирование алгоритма деления суммы на число.

III. Первичное закрепление.

Фронтальная работа. 1. Задание № 2, с. 44 2. Задание № 3, с. 45.

Рассматриваем 3 способа решения: 12 : 3 + 9 : 3; 9 : 3 + 12 : 3; ( 12 + 9) : 3

IV. Самостоятельная работа в парах. Задание № 4, с. 45. После проверки решения обязательно рассматриваются и сопоставляются все способы решения.

В ходе эксперимента были определены наиболее эффективные формы работы, направленные на развитие математических способностей:

- фронтальная, индивидуальная и групповая работа; -дифференциация учебных заданий по уровню творчества, трудности, объёму Для развития математических способностей использованы широкие возможности вспомогательных форм учебной работы:

Страницы: 1 2 3 4 5 6 7

Полезная информация:

Влияние различных факторов на проявление силы мышц
Сила сокращения мышц зависит от многих причин, в частности от анатомического (морфологического) строения мышц. Так, мышцы, перистого строения, проигрывая в величине укорочения, выигрывают у веретенообразных мышц или у мышц с параллельными продольной оси волокнами в силе сокращения, потому что у них ...

Классификация методов обучения по источнику получения знаний
Существует три источника знаний: слово, наглядность, практика. Соответственно выделяют словесные методы (источником знания является устное или печатное слово); наглядные методы (источниками знания являются наблюдаемые предметы, явления, наглядные пособия); практические методы (знания и умения форми ...

Наблюдение за поведением. значение наблюдения и его признаки
"Наблюдение — основной метод общественных наук, занимающихся эмпирическими исследованиями, и педагогики". Наблюдение за поведением является основным методом и педагогической диагностики. Педагоги могут пользоваться этим методом практически постоянно, в то время как все остальные методы на ...

Категории

Copyright © 2024 - All Rights Reserved - www.oxoz.ru