Итоговый контроль проводился с целью фиксации конечного уровня обученности и осуществлялся с помощью специально организованной самостоятельной работы по определению уровня обученности.
Сравнение исходного уровня обученности с конечным уровнем обученности позволяет судить об эффективности дидактического процесса и в итоге о повышении или понижении качества математического образования.
На момент проведения эксперимента класс изучил тему «Показательная функция, ее свойства и график». На эту тему и была организована самостоятельная работа диагностического характера, для определения исходного уровня обученности.
Предварительный контроль. Самостоятельная работа на тему «Показательная функция, ее свойства и график».
Результаты предварительного контроля .
О проведенных современных уроках.
Далее, было запланировано 4 урока алгебры и начал анализа, на которых были осуществлены попытки реализации требований к современному уроку на практике:
Показательные уравнения. Технология: проблемное обучение.
Показательные уравнения. Технология: групповое обучение.
Показательные неравенства. Технология: модульное обучение.
Показательные неравенства. Технология: модульное обучение.
Сейчас о каждом уроке более подробно.
1 Урок
Первый урок проводился по технологии проблемного обучения. Немного об этой технологии.
Проблемное обучение – это обучение, при котором преподаватель, систематически создавая проблемные ситуации и организуя деятельность учащихся по решению учебных проблем, обеспечивает оптимальное сочетание их самостоятельной поисковой деятельности с усвоением готовых выводов науки.
Проблемное обучение направлено на формирование познавательной самостоятельности учащихся, развитие их логического, рационального, критического и творческого мышления и познавательных способностей.
Проблемная ситуация – это состояние умственного затруднения, вызванного в определенной учебной ситуации объективной недостаточностью ранее усвоенных учащимися знаний и способов умственной или практической деятельности для решения возникшей познавательной задачи.
В процессе обучения математике существуют разные возможности создания проблемных ситуаций.
Можно выделить практические этапы деятельности учащихся при использовании технологии проблемного обучения. На первом этапе происходит осознание проблемы, учащиеся вскрывают противоречие, заложенное в вопросе. Это противоречие может быть разрешено с помощью гипотезы. Формулирование гипотезы составляет второй этап. Третий этап решения проблемы доказательство гипотезы. Заканчивается решение проблемы общим выводом, в котором изучаемые причинно-следственные связи углубляются и раскрываются новые стороны познаваемого объекта или явления – четвертый этап решения проблемы .
Урок по теме «Показательные уравнения».
Приведем замечание по проведенному уроку. В практической реализации урока при общих выводах по решенной проблеме желательно было бы провести с учащимися некоторую (хотя еще не совсем полную) классификацию показательных уравнений и способов их решения. Один из вариантов классификации показательных уравнений можно найти в (там же много и практических заданий). Приведем классификацию показательных уравнений применительно к проведенному уроку.
Полезная информация:
Непроизвольное запоминание и деятельность
Одним из наиболее весомых исследователей в области психологии памяти является, конечно, П.И. Зинченко. Широко известны многие его публикации и эксперименты. Наиболее знакомым и известным является эксперимент с картинками и числами. «Для раскрытия закономерных связей и зависимостей непроизвольного з ...
Основные принципы профессиональной деятельности педагога-психолога
Принципы деятельности педагога-психолога в учреждениях образования призваны обеспечить: - решение профессиональных задач в соответствии с этическими нормами; - защиту законных прав людей, с которыми педагоги-психологи вступают в профессиональное взаимодействие: обучающихся, воспитанников, их родите ...
Анализ литературы по проблеме исследования
Модульное обучение в первоначальном виде зародилось в конце 60-х годов и быстро распространилось в англоязычных странах, прежде всего, в США, Англии и Канаде. Вскоре им заинтересовались и исследователи России. В настоящее время накоплен достаточный материал научных сведений по вопросам модульного о ...