Итоговый контроль проводился с целью фиксации конечного уровня обученности и осуществлялся с помощью специально организованной самостоятельной работы по определению уровня обученности.
Сравнение исходного уровня обученности с конечным уровнем обученности позволяет судить об эффективности дидактического процесса и в итоге о повышении или понижении качества математического образования.
На момент проведения эксперимента класс изучил тему «Показательная функция, ее свойства и график». На эту тему и была организована самостоятельная работа диагностического характера, для определения исходного уровня обученности.
Предварительный контроль. Самостоятельная работа на тему «Показательная функция, ее свойства и график».
Результаты предварительного контроля .
О проведенных современных уроках.
Далее, было запланировано 4 урока алгебры и начал анализа, на которых были осуществлены попытки реализации требований к современному уроку на практике:
Показательные уравнения. Технология: проблемное обучение.
Показательные уравнения. Технология: групповое обучение.
Показательные неравенства. Технология: модульное обучение.
Показательные неравенства. Технология: модульное обучение.
Сейчас о каждом уроке более подробно.
1 Урок
Первый урок проводился по технологии проблемного обучения. Немного об этой технологии.
Проблемное обучение – это обучение, при котором преподаватель, систематически создавая проблемные ситуации и организуя деятельность учащихся по решению учебных проблем, обеспечивает оптимальное сочетание их самостоятельной поисковой деятельности с усвоением готовых выводов науки.
Проблемное обучение направлено на формирование познавательной самостоятельности учащихся, развитие их логического, рационального, критического и творческого мышления и познавательных способностей.
Проблемная ситуация – это состояние умственного затруднения, вызванного в определенной учебной ситуации объективной недостаточностью ранее усвоенных учащимися знаний и способов умственной или практической деятельности для решения возникшей познавательной задачи.
В процессе обучения математике существуют разные возможности создания проблемных ситуаций.
Можно выделить практические этапы деятельности учащихся при использовании технологии проблемного обучения. На первом этапе происходит осознание проблемы, учащиеся вскрывают противоречие, заложенное в вопросе. Это противоречие может быть разрешено с помощью гипотезы. Формулирование гипотезы составляет второй этап. Третий этап решения проблемы доказательство гипотезы. Заканчивается решение проблемы общим выводом, в котором изучаемые причинно-следственные связи углубляются и раскрываются новые стороны познаваемого объекта или явления – четвертый этап решения проблемы .
Урок по теме «Показательные уравнения».
Приведем замечание по проведенному уроку. В практической реализации урока при общих выводах по решенной проблеме желательно было бы провести с учащимися некоторую (хотя еще не совсем полную) классификацию показательных уравнений и способов их решения. Один из вариантов классификации показательных уравнений можно найти в (там же много и практических заданий). Приведем классификацию показательных уравнений применительно к проведенному уроку.
Полезная информация:
Модели образования
История зафиксировала различные модели образования, каждая из которых имеет свои положительные тенденции и сыграла определенную роль. Кратко перечислим основные. Модель образования как государственно-ведомственной организации. В этом случае система образования рассматривается структурами государств ...
Взаимосвязь нравственного и физического воспитания
С поступлением ребёнка в школу в его жизни происходит ряд серьёзных изменений. В интересующем нас отношении они проявляются прежде всего в том, что у ребёнка появляется дело (учение), отношение к которому, наряду с успешностью его выполнения, постоянно оценивается взрослыми. При поступлении в школу ...
Составляющие ЗОЖ младших школьников
Во все времена у всех народов мира непреходящей ценностью человека и общества являлось и является физическое и психическое здоровье. Еще в древности оно понималось врачами и философами как главное условие свободной деятельности человека, его совершенства. Но несмотря на большую ценность, придаваему ...