Понятие преобразования

Изложение теории геометрических преобразований начнём с общих определений.

Определение. Отображением f множества X в множество Y называется такое соответствие, при котором каждому элементу x множества X соответствует вполне определённый элемент y множества Y.

Oобозначение.f: X Y

Элемент y называется образом элемента x, а элемент x называется прообразом элемента y при отображении f.

y= f(x)

Определение. Отображение f: X Y называется

Инъективным (инъекцией), если каждым двум различным элементам множества X соответствуют два различных элемента множества Y.

Сюръективным (сюръекцией), если f(X) = Y, т. е. каждый элемент множества Y является образом, по крайней мере, одного элемента множества X.

Взаимно – однозначным или биективным (биекцией), если оно является одновременно сюръективным и инъективным.

Определение. Совокупность B всех элементов множества X, образами которых служат элементы множества B', являющегося подмножеством множества Y, называется полным прообразом множества B' при отображении f.

Определение. Если f(X)X, то говорят, что множество X отображается в себя. При f(X) =x говорят, что множество X отображается на себя.

Определение. Отображение f множества X на множество Y называется обратимым (взаимно - обратным), если образы любых двух различных элементов различны. В этом случае существует обратное отображение f-1 множества Y на множество X.

Определение. Отображение множества X на множество Y называется взаимнооднозначным, если каждому элементу множества X ставиться в соответствии один и только один элемент множества Y, и каждый элемент множества Y поставлен в соответствии одному и только одному элементу множества X.

Таким образом, при взаимнооднозначном отображении множества X на множество Y.

каждому элементу множества X, ставится в соответствии некоторый элемент множества Y;

различным элементам множества X, ставится в соответствии различные элементы множества Y;

каждый элемент множества X поставлен в соответствие некоторому элементу множества Y.

Необходимый и достаточный признак преобразования данного множества – одновременное выполнение двух условий:

Каждый элемент множества имеет единственный образ в этом множестве;

Каждый элемент данного множества имеет единственный прообраз в этом множестве.

Определение. Пусть f и g – два преобразования множества X и для произвольного xX, f(х)=y, g(y)=z, причём yX, zX. Определим отображение , являющееся преобразованием множества X. Преобразование . Называется композицией (произведением) преобразования f и преобразования g. Пишут =gf(=g×f).

(х)=(g×f)(x)=g(f(x))=g(y)=z

Определение. Два преобразования f1и f2 одного итого же множества X называются равными, совпадающими, если для любого xX имеет место f1(x)=f2(x).

Определение. Преобразование e множества X называется тождественным, если для любого xX, имеет место e(x)=x. Поэтому для любого преобразования f множества ef=fe=e.

Определение. При любом преобразовании f объединение множеств отображается на объединение их образов

f (AB)=f(A)f(B).

Определение. При любом преобразовании пересечение множеств отображается на пересечение образов этих множеств

f (AB)=f(A)f(B).

Полезная информация:

Oсновные пути реализации метода развивающего дискомфорта в обучении и развитии одаренных детей
Существует, по крайней мере, несколько основных направлений реализации метода развивающего дискомфорта в обучении и развитии одаренных детей. Только использование всех этих направлений в сумме может дать необходимый эффект. 1. Работа по методу развивающего дискомфорта начинается и постоянно предпол ...

Развитие коммуникативной функции речи
Детям с задержкой в развитии доступна простота диалогической речи. При изложении своих мыслей дети допускают много ошибок в построении предложений, особенно сложных. Они легко соскальзывают с одной темы на другую, более знакомую. Рассказывая, дети часто повторяют одни и те же фразы, что указывает н ...

Роль физкультурно-оздоровительных мероприятий
Вполне логично, что первой образовательной линией Базового компонента дошкольного образования как Государственного стандарта дошкольного образования Украины определена "Личность ребенка", состоящая из двух частей: "Здоровье и физическое развитие" и "Самоотношение". Раз ...

Категории

Copyright © 2025 - All Rights Reserved - www.oxoz.ru