Последний частный вид параллелограмма – квадрат. Здесь говорится, что квадрат является прямоугольником и ромбом одновременно, следовательно, его диагонали взаимно перпендикулярны и равны.
В последнем пункте данного параграфа речь идет о характерных свойствах фигур. Дается определение характерного свойства. Приводится пример характерных свойств параллелограмма, прямоугольника и ромба.
В конце каждого параграфа и главы приводятся вопросы и задачи для проверки ЗУН учащихся.
Изучение четырехугольников идет по следующей теме:
2.1.4 «Геометрия, 7-9», авт. И. М. Смирнова, В. А. Смирнов
Тема «Четырехугольники» изучается в восьмом классе в главе «Параллельность».
В первом параграфе рассматриваются параллельные прямые. Дается определение параллельных прямых, секущей. Определяются соответственные, внутренние накрест лежащие и внутренние односторонние углы. Доказывается признак параллельности двух прямых, и рассматриваются три следствия данной теоремы. Также доказывается теорема о равенстве внутренних накрест лежащих углов.
Следующий параграф посвящен сумме углов многоугольника. Сначала доказывается, что сумма углов треугольника равна 1800, а затем переходят к доказательству общего случая.
В третьем параграфе рассматривают параллелограмм. Дается определение параллелограмма, доказывается три его свойства. Рассмотрен пример на применение свойств параллелограмма. На признаки параллелограмма отводится четвертый параграф, в котором доказываются первый и второй признаки параллелограмма. Приведено два примера на применение данных признаков.
В пятом параграфе рассмотрены прямоугольник, ромб и квадрат. Прямоугольник и ромб определяются через параллелограмм. Авторы отмечают, что прямоугольник является частным случаем параллелограмма. Поэтому он обладает всеми свойствами параллелограмма и приводят доказательство признака прямоугольника (если в параллелограмме диагонали равны, то это прямоугольник).
Ромб также является параллелограммом, следовательно, он обладает всеми его свойствами. Приводится доказательство признака ромба (если в параллелограмме диагонали перпендикулярны, то это ромб).
Квадрат определяется через прямоугольник. Авторы отмечают, что квадрат также является ромбом, у которого все углы прямые. На основании этого следует, что квадрат обладает всеми свойствами прямоугольника и ромба.
Перед изучением трапеции авторы рассматривают теорему о средней линии треугольника. Дают определение средней линии треугольника и приводят доказательство теоремы. Этот шаг оправдан, так как при доказательстве теоремы о средней линии трапеции используется теорема о средней линии треугольника. Определение трапеции такое же, как и в других учебниках. Трапецией называется четырехугольник, у которого две стороны параллельны. Дается определение равнобокой, прямоугольной трапеций, средней линии трапеции. Приводится доказательство теоремы о средней линии трапеции и рассматривается следствие из данной теоремы.
В конце главы приводится доказательство теоремы Фалеса, которая является обобщением теорем о средней линии треугольника и трапеции. В конце каждого параграфа и главы приводятся вопросы и задачи для проверки ЗУН учащихся.
Изучение четырехугольников в учебнике И. В. Смирнова, В. А. Смирнов идет по следующей схеме:
Полезная информация:
Развитие внимания и способы поддержания его устойчивости
Внимание — это направленность и сосредоточенность сознания на каком-либо предмете, явлении, действии. Главная особенность внимания состоит в том, что оно не существует вне какого-либо действия, само по себе. Лишь выполняя перцептивные, умственные или двигательные (в том числе и различные комбиниров ...
Содержание разделов дисциплины «Биофизика»
Таблица 2 – Разделы дисциплины и виды занятий № Раздел дисциплины Лекции Лабораторные занятия Самостоятельная работа студента Раздел 1 Основы общей биофизики 2 4 6 Раздел 2 Молекулярная биофизика. 4 6 10 Раздел 3 Биофизика клетки 10 14 22 Раздел 4 Биофизика сложных систем организма 10 14 22 Раздел ...
Сопоставление результатов констатирующего и
контрольного срезов
Для выявления уровня сформированности вышеперечисленных умений с учащимися был проведен контрольный срез и сопоставлен с констатирующим. Контрольный срез также проводился на двух классах. Цель контрольного среза – проверить уровень сформированности умений по сравнению с констатирующим срезом. Кроме ...