Величина — одно из основных математических понятий, смысл которого с развитием математики подвергался ряду обобщений.
Задатки геометрических знаний, связанных с измерением площадей, теряются в глубине тысячелетий.
Еще 4—5 тыс. лет назад вавилоняне умели определять площадь прямоугольника и трапеции в квадратных единицах. Квадрат издавна служил эталоном при измерении площадей благодаря многим своим замечательным свойствам: равные стороны, равные и прямые углы, симметричность и общее совершенство формы. Квадраты легко строить, ими можно заполнить плоскость без пробелов (в Древнем Китае мерой площади был прямоугольник).
Древние египтяне 4000 лет назад пользовались почти теми же приемами, что и мы, для измерения площади прямоугольника, треугольника и трапеции: основание треугольника делилось пополам и умножалось на высоту; для трапеции же сумма параллельных сторон делилась пополам и умножалась на высоту. Для вычисления площади S четырехугольника со сторонами а, b, с, d (рис. 1) применялась формула
т. е. умножались полусуммы противоположных сторон. Эта формула верна только для прямоугольника. С ее помощью можно вычислить приближенно площадь таких четырехугольников, у которых углы близки к прямым.
Для определения площади S равнобедренного тpeyгольника АВС, в котором |АВ| = |АС| , египтяне пользовались приближенной формулой:
Совершаемая при этом ошибка тем меньше, чем меньше разность между стороной и высотой
треугольника, иными словами, чем ближе вершина В (и С) к основанию D высоты из А. Вот почему приближенная формула применима лишь для треугольников с сравнительно малым углом при вершине.
Понятие угла на протяжении веков не оставалось без изменений, оно обобщалось и расширялось под влиянием запросов практики и науки. Градусная система измерения углов, в которой за единицу принят угол, равный части угла, соответствующего полному обороту одной стороны угла около его вершины, восходит к III - II тысячелетиям до н. э., к периоду возникновения шестидесятеричной системы счисления в вавилонской математике.
Шестидесятеричное градусное измерение, как и шестидесятеричные дроби, проникло далеко за пределы ассиро-вавилонского царства и получило широкое распространение в странах Азии, Северной Африки и Западной Европы. Они применялись, в частности, в астрономии и связанной с ней тригонометрии.
Гиппарх, Птолемей и другие древнегреческие астрономы употребляли таблицы, в которых давались величины хорд, соответствующих данным дугам. Хорды (как и дуги) измерялись градусами, минутами и секундами, при этом один градус составлял обычно шестидесятую часть радиуса. Индийцы заимствовали через греков вавилонское градусное измерение дуг, но вместо хорд они измеряли линии синусов и косинусов. Градусным измерением пользовались и ученые стран Ближнего и Среднего Востока, внесшие большой вклад в развитие тригонометрии.
Выдающийся немецкий математик и астроном XV в. Региомонтан отступил от шестидесятеричного деления радиуса и за единицу измерения линии синуса принял одну десятимиллионную часть радиуса, что позволило выражать синусы целыми числами, а не шестидесятеричными дробями. Аналогично поступали и многие последовавшие за ним европейские математики.
Во время буржуазной революции конца XVIII в. во Франции была введена наряду с метрической системой мер и центезимальная (сотенная) система измерения углов, в которой прямой угол делился на 100 градусов, градус- на 100 минут, минута - на 100 секунд. Эта система применяется и поныне в некоторых геодезических измерения, но всеобщего употребления пока не получила.
В связи с возникновением и развитием теории пределов и математического анализа с целью придать многим формулам возможно более простой вид в тригонометрии ввели радианное измерение дуг и углов. Термин «радиан» происходит от латинского radius — радиус.
Объемы зерновых амбаров и других сооружений в виде кубов, призм и цилиндров египтяне и вавилоняне, китайцы и индийцы вычисляли путем умножения площади основания на высоту. Однако древнему Востоку были известны в основном только отдельные правила, найденные опытным путем, которыми пользовались для нахождения объемов и площадей фигур. В более позднее время, когда геометрия сформировалась как наука, был найден общий подход к вычислению объемов многогранников.
Среди замечательных греческих ученых V—IV вв. до н. э., которые разрабатывали теорию объемов, были Демокрит из Абдеры и Евдокс Книдский.
Евклид не применяет термина «объем». Для него термин «куб», например, означает и объем куба. В XI книге «Начал» изложены среди других и теоремы, следующего содержания.
Полезная информация:
Организация внеклассной работы по русскому языку
В Основных направлениях реформы общеобразовательной и профессиональной школы сказано: «Свободное владение русским языком должно стать нормой для молодежи, оканчивающей средние учебные заведения». Такой уровень владения русским языком может быть достигнут лишь при комплексном использовании различн ...
Методика проведения урока по теме:
«Щелочные металлы. Физические и химические свойства»
Нами были разработаны методические указания с применением мультимедийного урока по теме: «Щелочные металлы. Физические и химические свойства». По типу этот урок относился к уроку приобретения новых знаний. Были поставлены следующие цели: Образовательная: дать общую характеристику щелочных металлов ...
Разработка проекта «Формирование системы информационного образования школьников
МОУ «Сахарозаводская сош»
Проект Школа и библиотека есть альфа и омега образования» Доминго Ф. Сармиенто Проблема: Отсутствие системы информационного образования школьников. Определение: Информационная культура личности – одна из составляющих общей культуры человека; совокупность информационного мировоззрения и системы знан ...