Учитель ставит задачу: найти правило, по которому составлена таблица, и вписать пропущенные числа. Выясняется, что числа верхней и нижней строк таблицы есть слагаемые, а средней – их сумма. Учитель предлагает обосновать это предположение, в ходе чего проверяет знания и понимание учащимися правила сложения двух чисел с разными знаками на конкретны примерах.
Необычность упражнения захватывает ребят, класс получает положительный заряд эмоций на весь оставшийся урок.
Традиционно, конец урока предвещает постановку домашнего задания. Однако способы окончания урока также полезно разнообразить: ∙ путем подведения итогов; ∙ ознакомления учащихся с обобщающими выводами и идеями; ∙ привлечения исторических сведений; ∙ выполнения игровых упражнений; ∙ решения головоломок, кроссвордов, ребусов на математическую тему.
Конечно это неполный список. Этот список может пополниться в результате вашего творчества!!!
Третье направление совершенствования урока математики.
3. Развитие технологического подхода к обучению математике.
К сожалению, в нашей педагогической, и особенно методической литературе, мало уделено внимания данной теме (именно использованию педагогических технологий на уроках математики).
Отметим, основные известные сегодня, частно-педагогические технологии обучения математике, которые на методическом уровне решают проблему конструирования процесса обучения, направленного на достижение запланированных результатов:
Технология «Укрупнения дидактических единиц – УДЕ» (П. Эрдниев).
Технология, направленная на формирование общих подходов к организации усвоения вычислительных правил, определений и теорем через алгоритмизацию учебных действий учащихся (М. Волович), реализует теорию поэтапного формирования умственных действий П. Гальперина.
Технология обучения математики на основе решения задач (Р. Хазанкин).
Эта технология основана на следующих концептуальных положениях: 1) личностный подход, педагогика успеха, педагогика сотрудничества; 2) обучать математике = обучать решению задач; 3) обучать решению задач = обучать умениям типизации + умение решать типовые задачи; 4) индивидуализация обучения «трудных» и «одаренных»; 5) органическая связь индивидуальной и коллективной деятельности; 6) управление общением старших и младших школьников; 7) сочетание урочной и внеурочной работы.
Технология на основе системы эффективных уроков (А. Окунев).
Парковая технология обучения математике (А. Гольдин).
Технология мастерских построения знаний по математике (А. Окунев).
Применяются на уроках математики и различные личностно-ориентированные технологии обучения: технология дифференцированного обучения, технология модульного обучения, технология коллективного способа обучения, технология интегрированного урока.
Рассмотрим, для примера, более подробно технологию интегрированного урока. Цели интегрированных курсов – формирование целостного и гармоничного понимания и восприятия мира. Так, интересен опыт проведения интегрированного преподавания информатики и спецкурсов по математике Брейтигама Э. К. и Тевса Д. П. В статье они приводят схему проведения интегрированных уроков, посвященных выполнению творческого задания по исследованию функции и построению ее графика. Авторы статьи предлагают провести 6 уроков. На совместном вводном уроке преподаватели информатики и спецкурса по алгебре и началам анализа определяют цель, план, этапы выполнения задания. Каждому ученику предлагается свое задание: устанавливаются сроки и требования к выполнению и защите творческого задания. На этом же уроке проводится первичная консультация по индивидуальным заданиям. Математическая составляющая этого урока включает разбор схемы исследования функции, работу с параметром. Составляющая по информатике включает построение алгоритма для решения задачи, схему реализации алгоритма с помощью языка программирования. Второй и третий уроки посвящены выполнению учащимися творческих индивидуальных заданий с консультациями преподавателей математики и информатики. Пятый и шестой уроки итоговые. Они строятся по схеме: индивидуальный отчет по заданию преподавателю, ведущему спецкурс по алгебре и началам анализа, после успешной защиты учащиеся отчитываются по этому же заданию преподавателю информатики. Также в статье приводятся цели работы с точки зрения математики и информатики, пример творческого задания.
Полезная информация:
Развитие грамматического строя речи в онтогенезе
Развитие грамматического строя речи в онтогенезе описано в работах многих авторов: А.Н. Гвоздева. Т.Н. Ушаковой, А.М. Шахнаровича, Д.Б. Эльконина и др. Формирование грамматического строя речи (словоизменения, синтаксической структуры предложения) осуществляется лишь на основе определённого уровня к ...
Сохранение и забывание
Сохранение – это удержание заученного в памяти, т. е. сохранение следов и связей в мозгу. Забывание – исчезновение, выпадение из памяти, т. е. процесс угасания, ликвидации, «стирания» следов, затормаживание связей. Эти два процесса, противоположные по характеру, по сути дела представляют разные хар ...
Развитие речи у детей младшего дошкольного возраста в норме
Дошкольный возраст можно назвать периодом наиболее интенсивного освоения смыслов и целей человеческой деятельности. Главным новообразованием становиться новая внутренняя позиция, новый уровень осознания своего места в системе общественных отношений. Особенности эмоционального развития: · ребенок ос ...